
MOCK THETA FUNCTIONS, RANKS, AND MAASS FORMS

KEN ONO

1. Introduction

Generating functions play a central role throughout number theory. For example in
the theory of partitions, if p(n) denotes the number of partitions of an integer n, then
Euler observed that

(1.1) P (q) :=

∞∑

n=0

p(n)q24n−1 = q−1

∞∏

n=1

1

1 − q24n
= q−1 + q23 + 2q47 + 3q71 + 5q95 + · · · .

Similarly in the theory of quadratic forms, we have the following fundamental q-series
identity of Jacobi

(1.2) Θ(q) :=

∞∑

n=−∞
qn2

=

∞∏

n=1

(1 − q2n)5

(1 − qn)2(1 − q4n)2
= 1 + 2q + 2q4 + 2q9 + · · · .

Consequently, it follows that the integers rs(n), the number of representations of integers
n as sums of s squares, are formally given as the coefficients of the q-series

∞∑

n=0

rs(n)qn = Θ(q)s =

∞∏

n=1

(1 − q2n)5s

(1 − qn)2s(1 − q4n)2s
.

As a third example, consider the q-series A(q) defined by

(1.3) A(q) :=
∞∑

n=1

aE(n)qn := q
∞∏

n=1

(1−q4n)2(1−q8n)2 = q−2q5−3q9+6q13+2q17−· · · .

It is well known that L(E, s) =
∑∞

n=1
aE(n)

ns is the Hasse-Weil L-function of the elliptic
curve

E : y2 = x3 − x.

In particular, this fact implies that if p is an odd prime, then

aE(p) = p− #{(x, y) ∈ (Fp)
2 : y2 ≡ x3 − x (mod p)} = −

p−1∑

x=0

(
x3 − x

p

)
.
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Therefore, the q-series A(q) can be naively thought of as the “generating function” for
the number of Fp-points on the reductions of the elliptic curve E as one varies p.

These examples share the property that they all are generating functions which co-
incide with Fourier expansions of modular forms. Loosely speaking, a modular form

of weight k on a subgroup Γ ⊂ SL2(Z) with multiplier system ε is any meromorphic
function f(z) on H with the property that

f

(
az + b

cz + d

)
= ε(a, b, c, d)(cz + d)kf(z)

for every ( a b
c d ) ∈ Γ. The modularity of these generating functions follows from the

modularity of Dedekind’s eta-function

(1.4) η(z) := q1/24

∞∏

n=1

(1 − qn)

(note. q := e2πiz throughout). More precisely, modularity follows from the well known
transformation laws

(1.5) η(z + 1) = e(1/24)η(z) and η(−1/z) = (−iz) 1
2η(z),

where e(α) := e2πiα.
In this context, the theory of modular forms has played a central role in the study of

partitions, quadratic forms, and elliptic curves, as well as many other topics throughout
mathematics. The rich theory of modular forms allows one to prove theorems about
asymptotics, congruences, and multiplicative relations.

On the other hand, there are many related questions in which modular forms do not
appear to play a role. Here we consider problems on mock theta functions and partitions,
and we show that weak Maass forms play a prominent role. We shall consider recent
works [11, 12] by Bringmann and the author on mock theta functions and Dyson’s
partition ranks. In particular, we shall review recent results on:

• Modularity of mock theta functions,
• Dyson’s partition ranks and partition congruences,
• The Andrews-Dragonette Conjecture for the mock theta function f(q).

2. Weak Maass forms

We begin by recalling the notion of a weak Maass form of half-integral weight k ∈
1
2
Z \Z. If z = x+ iy with x, y ∈ R, then the weight k hyperbolic Laplacian is given by

(2.1) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

If v is odd, then define εv by

(2.2) εv :=

{
1 if v ≡ 1 (mod 4),

i if v ≡ 3 (mod 4).
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A weak Maass form of weight k on a subgroup Γ ⊂ Γ0(4) is any smooth function
f : H → C satisfying the following:

(1) For all A = ( a b
c d ) ∈ Γ and all z ∈ H, we have

f(Az) =

(
c

d

)2k

ε−2k
d (cz + d)k f(z).

Here
(

c
d

)
denotes the extended Legendre symbol.

(2) We have that ∆kf = 0.
(3) The function f(z) has at most linear exponential growth at all the cusps of Γ.

Similarly, we have the notion of a weak Maass form with Nebentypus. To define it,
suppose that N is a positive integer, and that ψ (mod 4N) is a Dirichlet character. A
weight k weak Maass form on Γ1(4N) is a weak Maass form on Γ0(4N) with Nebentypus

character ψ if for every A = ( a b
c d ) ∈ Γ0(4N) and all z ∈ H we have

f(Az) = ψ(d)

(
c

d

)2k

ε−2k
d (cz + d)k f(z).

Remark. The transformation laws in these definitions coincide with those in Shimura’s
theory of half-integral weight modular forms [31].

Weak Maass forms can be related to classical weakly holomorphic modular forms,
those forms whose poles (if there are any) are supported at cusps. A weak Maass
form which is holomorphic on H is already a weakly holomorphic modular form. More
generally, one may relate weak Maass forms to weakly holomorphic modular forms using
the anti-linear differential operator ξk defined by

ξk(f)(z) := 2iyk ∂
∂z̄
f(z).(2.3)

Here we have that
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

In their work on geometric theta lifts, Bruinier and Funke (see Prop. 3.2 of [13]) proved
the following valuable proposition.

Proposition 2.1. If f(z) is a weak Maass form of weight k for the group Γ0(4N) with

Nebentypus χ, then ξk(f) is a weakly holomorphic modular form of weight 2 − k on

Γ0(4N) with Nebentypus χ. Furthermore, ξk has the property that its kernel consists of

those weight k weak Maass forms which are weakly holomorphic modular forms.

Remark. Proposition 2.1 holds for weak Maass forms on any subgroup Γ ⊂ Γ0(4), not
just those with Nebentypus.
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The purpose of this expository paper is to describe a number of instances where the
theory of weak Maass forms gives new results on mock theta functions and partition
ranks. In particular, it will turn out that well known generating functions appear as
“pieces” of weak Maass forms. Weak Maass forms have Fourier expansions of the form

f(z) =

∞∑

n=n0

γ(f, n; y)q−n +

∞∑

n=n1

a(f, n)qn.

As one sees, the Fourier coefficients γ(f, n; y) are functions in y, the imaginary part of
z, while the coefficients a(f, n) are ordinary complex numbers. Therefore, we shall refer
to
∑∞

n=n0
γ(f, n; y)q−n as the “non-holomorphic part” of f(z), and we shall refer to∑∞

n=n1
a(f, n)qn as its “holomorphic part.” The number theoretic generating functions

we consider are holomorphic parts of weak Maass forms.

3. Mock theta functions and partition ranks

“The mock theta-functions give us tantalizing hints of a grand synthesis still to be dis-

covered. Somehow it should be possible to build them into a coherent group-theoretical

structure, analogous to the structure of modular forms which Hecke built around the old

theta-functions of Jacobi. This remains a challenge for the future. My dream is that

I will live to see the day when our young physicists, struggling to bring the predictions

of superstring theory into correspondence with the facts of nature, will be led to enlarge

their analytic machinery to include not only theta-functions but mock theta-functions.

. . . But before this can happen, the purely mathematical exploration of the mock-modular

forms and their mock-symmetries must be carried a great deal further.”

Freeman Dyson, 1987
Ramanujan Centenary Conference

Dyson’s quote (see page 20 of [18]) refers to 22 peculiar q-series, such as

(3.1) f(q) := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

which were defined by Ramanujan and Watson decades ago. In his last letter to Hardy
dated January 1920 (see pages 127-131 of [28]), Ramanujan lists 17 such functions,
and he gives 2 more in his “Lost Notebook” [28]. In his paper “The final problem: an
account of the mock theta functions” [33], Watson defines 3 further functions. Although
much remains unknown about these enigmatic series, Ramanujan’s mock theta functions
have been the subject of an astonishing number of important works (for example, see
[3, 4, 6, 7, 14, 15, 16, 20, 21, 22, 23, 28, 29, 33, 34, 35, 36] to name a few).

In his 2002 Ph.D. thesis [36], written under the direction of Zagier, Zwegers made
an important step in the direction of Dyson’s “challenge for the future” by relating
many of Ramanujan’s mock theta functions to real analytic vector valued modular
forms. More recently, Bringmann and the author have shown [12] that Dyson’s own
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rank generating function can already be used to construct the desired “coherent group-
theoretical structure, analogous to the structure of modular forms which Hecke built
around old theta functions of Jacobi”. More precisely, we relate specializations of
his partition rank generating function to weak Maass forms, and we show that the
non-holomorphic parts of these forms are period integrals of theta functions, thereby
realizing Dyson’s speculation that such a picture should involve theta functions.

In an effort to provide a combinatorial explanation of Ramanujan’s congruences for
p(n), Dyson introduced [17] the so-called “rank” of a partition. The rank of a partition
is defined to be its largest part minus the number of its parts. If N(m,n) denotes the
number of partitions of n with rank m, then it is well known that

(3.2) R(w; q) := 1 +

∞∑

n=1

∞∑

m=−∞
N(m,n)wmqn = 1 +

∞∑

n=1

qn2

(wq; q)n(w−1q; q)n
,

where

(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1),

(a; q)∞ :=

∞∏

m=0

(1 − aqm).

Letting w = −1, we obtain the series

R(−1; q) = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

This is the mock theta function f(q) given in (3.1). This observation connects the
additive number theory of partitions to mock theta functions. In the next section, we
link the specializations of these generating functions, at roots of unity w 6= 1, to weight
1/2 weak Maass forms.

3.1. Dyson’s generating functions and Maass forms. Here we complete Dyson’s
generating functions to obtain weak Maass forms. Suppose that 0 < a < c are integers,
and let ζc := e2πi/c. If fc := 2c

gcd(c,6)
, then define the theta function Θ

(
a
c
; τ
)

by

(3.3) Θ
(a
c
; τ
)

:=
∑

m (mod fc)

(−1)m sin

(
aπ(6m+ 1)

c

)
· θ
(
6m+ 1, 6fc;

τ

24

)
,

where τ ∈ H and

(3.4) θ(α, β; τ) :=
∑

n≡α (mod β)

ne2πiτn2

.
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Throughout, let `c := lcm(2c2, 24), and let ˜̀c := `c/24. It is well known [31] that
Θ
(

a
c
; `cτ

)
is a weight 3/2 cusp form, and we use it to define the function S1

(
a
c
; z
)

(3.5) S1

(a
c
; z
)

:=
−i sin

(
πa
c

)
`c

1
2

√
3

∫ i∞

−z̄

Θ
(

a
c
; `cτ

)
√

−i(τ + z)
dτ.

Using this notation, define D
(

a
c
; z
)

by

(3.6) D
(a
c
; z
)

:= −S1

(a
c
; z
)

+ q−
`c

24R(ζa
c ; q`c).

Theorem 3.1. (Bringmann-Ono, Theorems 1.1 and 1.2 of [12])
If 0 < a < c, then D

(
a
c
; z
)

is a weight 1/2 weak Maass form on Γc, where

(3.7) Γc :=

〈(
1 1
0 1

)
,

(
1 0
`2c 1

)〉
.

Moreover, if c is odd, then D
(

a
c
; z
)

is a weak Maass form of weight 1/2 on Γ1(144f 2
c
˜̀
c).

Sketch of the proof. The conclusion of the theorem follows from a general result (see
Theorem 3.4 of [12]) about vector valued weight 1/2 weak Maass forms for the modular
group SL2(Z), a result which is of independent interest. For brevity, here we only sketch
the proof of the first claim.

To prove this claim, we require modular transformation laws for the series R(ζa
c ; q`c).

Some of these laws have been obtained recently by Gordon and McIntosh [21]. To state
their results, we first define the series

M
(a
c
; z
)

= M
(a
c
; q
)

:=
1

(q; q)∞

∞∑

n=−∞

(−1)nqn+ a

c

1 − qn+ a

c

· q 3
2
n(n+1),

M1

(a
c
; z
)

= M1

(a
c
; q
)

:=
1

(q; q)∞

∞∑

n=−∞

(−1)n+1qn+ a

c

1 + qn+ a

c

· q 3
2
n(n+1),

N
(a
c
; z
)

= N
(a
c
; q
)

:=
1

(q; q)∞

(
1 +

∞∑

n=1

(−1)n (1 + qn)
(
2 − 2 cos

(
2πa
c

))

1 − 2qn cos
(

2πa
c

)
+ q2n

· q n(3n+1)
2

)
,

N1

(a
c
; z
)

= N1

(a
c
; q
)

:=
1

(q; q)∞

∞∑

n=0

(−1)n (1 − q2n+1)

1 − 2qn+ 1
2 cos

(
2πa
c

)
+ q2n+1

· q 3n(n+1)
2 .

(3.8)

Gordon and McIntosh show the following q-series identities

(3.9) M
(a
c
; q
)

=

∞∑

n=1

qn(n−1)

(q
a

c ; q)n · (q1− a

c ; q)n

,
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(3.10) N
(a
c
; q
)

= 1 +
∞∑

n=1

qn2

∏n
j=1

(
1 − 2 cos

(
2πa
c

)
qj + q2j

) .

Obviously, (3.8) and (3.10) imply the important fact that

(3.11) R(ζa
c ; q) = N

(a
c
; q
)
.

Their transformation laws involve the following Mordell integrals

J
(a
c
;α
)

:=

∫ ∞

0

e−
3
2
αx2 · cosh

((
3a
c
− 2
)
αx
)

+ cosh
((

3a
c
− 1
)
αx
)

cosh(3αx/2)
dx,

J1

(a
c
;α
)

:=

∫ ∞

0

e−
3
2
αx2 · sinh

((
3a
c
− 2
)
αx
)
− sinh

((
3a
c
− 1
)
αx
)

sinh(3αx/2)
dx.

(3.12)

Suppose that α and β have the property that αβ = π2. Gordon and McIntosh then
prove (see page 199 of [21]) that if q := e−α and q1 := e−β , then

q
3a

2c
(1− a

c
)− 1

24 ·M
(a
c
; q
)

=

√
π

2α
csc
(aπ
c

)
q
− 1

6
1 ·N

(a
c
; q4

1

)
−
√

3α

2π
· J
(a
c
;α
)
,

q
3a

2c
(1− a

c
)− 1

24 ·M1

(a
c
; q
)

= −
√

2π

α
q

4
3
1 ·N1

(a
c
; q2

1

)
−
√

3α

2π
· J1

(a
c
;α
)
.

(3.13)

Using the functions

N
(a
c
; q
)

= N
(a
c
; z
)

:= csc
(aπ
c

)
· q− 1

24 ·N
(a
c
; q
)
,(3.14)

M
(a
c
; q
)

= M
(a
c
; z
)

:= 2q
3a

2c
·(1− a

c
)− 1

24 ·M
(a
c
; q
)
,(3.15)

define the vector valued function F
(

a
c
; z
)

by

F
(a
c
; z
)

:=
(
F1

(a
c
; z
)
, F2

(a
c
; z
))T

=
(
sin
(πa
c

)
N
(a
c
; `cz

)
, sin

(πa
c

)
M
(a
c
; `cz

))T

.

(3.16)

Similarly, define the vector valued (non-holomorphic) function G
(

a
c
; z
)

by

G
(a
c
; z
)

=
(
G1

(a
c
; z
)
, G2

(a
c
; z
))T

:=

(
2
√

3 sin
(πa
c

)√
−i`cz · J

(a
c
;−2πi`cz

)
,
2
√

3 sin
(

πa
c

)

i`cz
· J
(
a

c
;
2πi

`cz

))T

.

(3.17)

The transformations in (3.13) easily imply the following transformations under the
generators of Γc.
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Lemma 3.2. Assume the notation and hypotheses above. For z ∈ H, we have

F
(a
c
; z + 1

)
= F

(a
c
; z
)
,

1√−i`cz
· F
(
a

c
;− 1

`c
2z

)
=

(
0 1
1 0

)
· F
(a
c
; z
)

+G
(a
c
; z
)
.

The Mordell vector G
(

a
c
; z
)

arises as integrals of the theta function Θ
(

a
c
; τ
)
.

Lemma 3.3. Assume the notation and hypotheses above. For z ∈ H, we have

G
(a
c
; z
)

=
i`

1
2
c sin

(
πa
c

)
√

3

∫ i∞

0

(
(−i`cτ)−

3
2 Θ
(

a
c
;− 1

`cτ

)
,Θ
(

a
c
; `cτ

)
,
)T

√
−i(τ + z)

dτ.

Proof of the lemma. For brevity, we only prove the asserted formula for the first com-
ponent of G

(
a
c
; z
)
. The proof of the second component follows in the same way.

By analytic continuation and a change of variables (note. we may assume that z = it
with t > 0), we find that

J

(
a

c
;
2π

`ct

)
= `ct ·

∫ ∞

0

e−3`cπtx2 · cosh
((

3a
c
− 2
)
2πx

)
+ cosh

((
3a
c
− 1
)
2πx

)

cosh(3πx)
dx.

Using the Mittag-Leffler theory of partial fraction decompositions, one finds that

cosh
((

3a
c
− 2
)
2πx

)
+ cosh

((
3a
c
− 1
)
2πx

)

cosh(3πx)

=
−i√
3π

∑

n∈Z

(−1)n sin
(

πa(6n+1)
c

)

x− i
(
n+ 1

6

) − i√
3π

∑

n∈Z

(−1)n sin
(

πa(6n+1)
c

)

−x− i
(
n+ 1

6

) .

By introducing the extra term 1

i(n+ 1
6)

, we just have to consider

∫ ∞

−∞
e−3π`ctx2

∑

n∈Z

(−1)n sin

(
πa(6n + 1)

c

)(
1

x− i
(
n+ 1

6

) +
1

i
(
n+ 1

6

)
)

dx.

Since this expression is absolutely convergent, we may interchange summation and
integration to obtain

J

(
a

c
;
2π

`ct

)
=

−`cit√
3π

∑

n∈Z

(−1)n sin

(
πa(6n+ 1)

c

)∫ ∞

−∞

e−3π`ctx2

x− i
(
n + 1

6

) dx.

For all s ∈ R \ {0}, we have the identity
∫ ∞

−∞

e−πtx2

x− is
dx = πis

∫ ∞

0

e−πus2

√
u+ t

du
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(this follows since both sides are solutions of
(
− ∂

∂t
+ πs2

)
f(t) = πis√

t
and have the same

limit 0 as t 7→ ∞ and hence are equal). Hence we may conclude that

J

(
a

c
;
2π

`ct

)
=

`ct

6
√

3

∑

n∈Z

(−1)n(6n+ 1) sin

(
πa(6n + 1)

c

)∫ ∞

0

e−π(n+1/6)2u

√
u+ 3`ct

du.

Substituting u = −3`ciτ , and interchanging summation and integration gives

J

(
a

c
;
2π

`ct

)
=

−it`c
3
2

6

∫ i∞

0

∑
n∈Z(−1)n(6n+ 1) sin

(
πa(6n+1)

c

)
e3πi`cτ(n+ 1

6)
2

√
−i(τ + it)

dτ.

The claim follows since the sum over n coincides with definition (3.3). �

We must determine the necessary modular transformation properties of the vector

S
(a
c
; z
)

=
(
S1

(a
c
; z
)
, S2

(a
c
; z
))

:=
−i sin

(
πa
c

)
`c

1
2

√
3

∫ i∞

−z̄

(
Θ
(

a
c
; `cτ

)
, (−i`cτ)−

3
2 Θ
(

a
c
;− 1

`cτ

))T

√
−i(τ + z)

dτ.

(3.18)

Since Θ
(

a
c
; `cz

)
is a cusp form, the integral above is absolutely convergent. The next

lemma shows that S
(

a
c
; z
)

satisfies the same transformations as F
(

a
c
; z
)
.

Lemma 3.4. Assume the notation and hypotheses above. For z ∈ H, we have

S
(a
c
; z + 1

)
= S

(a
c
; z
)
,

1√−i`cz
· S
(
a

c
;− 1

`c
2z

)
=

(
0 1
1 0

)
· S
(a
c
; z
)

+G
(a
c
; z
)
.

Proof of the lemma. Using the Fourier expansion of Θ
(

a
c
; z
)
, one easily sees that

S1

(a
c
; z + 1

)
= S1

(a
c
; z
)
.

Using classical facts about theta functions [31], we also have that

S2

(a
c
; z + 1

)
= S2

(a
c
; z
)
.

Hence, it suffices to prove the second transformation law. We directly compute

1√−i`cz
·S
(
a

c
;− 1

`c
2z

)

=
i sin

(
πa
c

)
`c

1
2

√
3
√
−i`cz

∫ i∞

1
`c

2 z̄

(
Θ
(

a
c
; `cτ

)
, (−i`cτ)−

3
2 Θ
(

a
c
;− 1

`cτ

))T

√
−i
(
τ − 1

`c
2z

) dτ,
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and after making the change of variable τ 7→ − 1
`c

2τ
, we obtain

1√−i`cz
· S
(
a

c
;− 1

`c
2z

)

=
i sin

(
πa
c

)
`c

1
2

√
3

∫ −z̄

0

(
(−i`cτ)−

3
2 Θ
(

a
c
;− 1

`cτ

)
,Θ
(

a
c
, `cτ

))T

√
−i (τ + z)

dτ.

Consequently, we obtain the desired conclusion

1√
−i`cz

· S
(
a

c
;− 1

`c
2z

)
−
(

0 1
1 0

)
· S
(a
c
; z
)

=
i sin

(
πa
c

)
`c

1
2

√
3

∫ i∞

0

(
(−i`cτ)−

3
2 Θ
(

a
c
;− 1

`cτ

)
,Θ
(

a
c
; `cτ

))T

√
−i (τ + z)

dτ = G
(a
c
; z
)
.

�

Using (3.6), (3.8), (3.11), (3.14), and (3.16), we find that we have already determined
the transformation laws satisfied by D

(
a
c
; z
)

since we have
(

1 0
`c

2 1

)
=

(
0 1

−`c2 0

)(
1 −1
0 1

)(
0 − 1

`c
2

1 0

)
.

The key point is that the first and third matrices on the right provide the same Möbius
transformation on H. Therefore the transformation laws forD

(
a
c
; z
)

follow from Lemma
3.2 and Lemma 3.4.

Now we show that D
(

a
c
; z
)

is annihilated by

∆ 1
2

= −y2

(
∂2

∂x2
+

∂2

∂y2

)
+
iy

2

(
∂

∂x
+ i

∂

∂y

)
= −4y

3
2
∂

∂z

√
y
∂

∂z̄
.

Since q−
`c

24R(ζa
b ; q`c) is a holomorphic function in z, we get

∂

∂z̄

(
D
(a
c
; z
))

= − ∂

∂z̄

(
S1

(a
c
; z
))

=
sin
(

πa
c

)
`

1
2
c√

6y
· Θ
(a
c
;−`cz̄

)
.

Hence, we find that
√
y ∂

∂z̄

(
D
(

a
c
; z
))

is anti-holomorphic, and so

∂

∂z

√
y
∂

∂z̄

(
D
(a
c
; z
))

= 0.

To complete the proof, it suffices to show that D
(

a
c
; z
)

has at most linear exponential

growth at cusps. This follows from the convergence of the period integral S1

(
a
c
; z
)

and

the transformation laws satisfied by D
(

a
c
; z
)
. �
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Remark. Zwegers observed [35] that one may interprete Watson’s transformation laws
for the third order mock theta functions in terms of a vector valued real analytic modular
form on SL2(Z). Bringmann and the author constructed (see Theorem 3.4 of [12]) an
infinite class of SL2(Z) vector valued weight 1/2 weak Maass forms. This result implies
Theorem 3.1, and it is a generalization of Zwegers’ observation.

3.2. Ramanujan’s partition congruences. Theorem 3.1 sheds new light on the role
that Dyson’s rank plays in the theory of partition congruences. If r and t are integers,
then let N(r, t;n) be the number of partitions of n whose rank is r (mod t). Using a
standard argument involving the orthogonality relations on sums of roots of unity, it is
straightforward to deduce that if 0 ≤ r < t are integers, then

(3.19)

∞∑

n=0

N(r, t;n)qn =
1

t

∞∑

n=0

p(n)qn +
1

t

t−1∑

j=1

ζ−rj
t · R(ζj

t ; q).

By Theorem 3.1, it then follows that

∞∑

n=0

(
N(r, t;n) − p(n)

t

)
q`tn− `t

24

is the holomorphic part of a weak Maass form of weight 1/2 on Γt, one which is given
as an appropriate weighted sum of the weak Maass forms D

(
a
t
; z
)
. If t is odd, then it

is on Γ1(144f 2
t
˜̀
t). This result allows us to relate many “sieved” generating functions to

weakly holomorphic modular forms.

Theorem 3.5. (Bringmann-Ono, Theorem 1.4 of [12])
If 0 ≤ r < t are integers, where t is odd, and P - 6t is prime, then

∑

n≥1

(24`tn−`t

P )=−(−24 è
t

P )

(
N(r, t;n) − p(n)

t

)
q`tn− `t

24

is a weight 1/2 weakly holomorphic modular form on Γ1(144f 2
t
˜̀
tP4).

Sketch of the proof. The proof requires the Fourier expansions of the forms D
(

a
c
; z
)
.

To give these expansions, we require the incomplete Gamma-function

(3.20) Γ(a; x) :=

∫ ∞

x

e−tta−1 dt.
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For integers 0 < a < c, we have

D
(a
c
; z
)

= q−
`c

24 +

∞∑

n=1

∞∑

m=−∞
N(m,n)ζam

c q`cn− `c

24

+
i sin

(
πa
c

)
`

1
2
c√

3

∑

m (mod fc)

(−1)m sin

(
aπ(6m+ 1)

c

) ∑

n≡6m+1 (mod 6fc)

γ(c, y;n)q−
è
cn2

,

(3.21)

where

γ(c, y;n) :=
i√
2π ˜̀c

· Γ
(

1

2
; 4π ˜̀cn2y

)
.

This expansion follows easily from

− S1

(a
c
; z
)

=
i sin

(
πa
c

)
`

1
2
c√

3

∑

m (mod fc)

(−1)m sin

(
aπ(6m+ 1)

c

)

×
∑

n≡6m+1 (mod 6fc)

∫ i∞

−z

ne2πin2 è
cτ

√
−i(τ + z)

dτ,

and the integral identity
∫ i∞

−z

ne2πin2 è
cτ

√
−i(τ + z)

dτ = γ(c, y;n) · q− è
cn2

.

The key point of the proof is that the non-holomorphic parts of these weak Maass
forms have the property that their coefficients are supported on a fixed square class,
one which is easily annihilated by taking linear combinations of quadratic twists. In
particular, suppose that P - 6c is prime. For this prime P, let

g :=

P−1∑

v=1

(
v

P

)
e

2πiv

P

be the usual Gauss sum with respect to P. Define the function D
(

a
c
; z
)
P by

(3.22) D
(a
c
; z
)

P
:=

g

P
P−1∑

v=1

(
v
P
)
D
(a
c
; z
)

| 1
2

(
1 − v

P

0 1

)
,

where | 1
2

is the usual “slash operator” (for example, see page 51 of [26]). By construction,

D
(

a
c
; z
)
P is the P quadratic twist of D

(
a
c
; z
)
. In other words, the nth coefficient in

the q-expansion of D
(

a
c
; z
)
P is

(
n
P
)

times the nth coefficient of D
(

a
c
; z
)
. For the non-

holomorphic part, this follows from the fact that the factors γ(c, y;n) appearing in
(3.21) are fixed by the transformations in (3.22).
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Generalizing classical facts about twists of modular forms, D
(

a
c
; z
)
P is a weak Maass

form of weight 1/2 on Γ1(144f 2
c
˜̀
cP2). By (3.21), it follows that

(3.23) D
(a
c
; z
)
−
(− ˜̀c

P

)
D
(a
c
; z
)

P

is a weak Maass form of weight 1/2 on Γ1(144f 2
c
˜̀
cP2) with the property that its non-

holomorphic part is supported on summands of the form ∗q− è
cP2n2

. These terms are
annihilated by taking the P-quadratic twist of this Maass form. Consequently, we

obtain a weakly holomorphic modular form of weight 1/2 on Γ1(144f 2
c
˜̀
cP4). Thanks

to (3.19), when t = c, the conclusion of Theorem 3.5 follows. �

Theorem 3.5 allows us to employ the rich theory of weakly holomorphic modular
forms in the study of partition ranks. Here we describe results which were originally
inspired by the celebrated Ramanujan congruences:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

In his famous seminal paper [17], Dyson conjectured that ranks could be used to provide
a combinatorial “explanation” for the first two congruences1. Precisely, he conjectured2

that for every integer n and every r we have

(3.24) N(r, 5; 5n+ 4) =
p(5n+ 4)

5
,

(3.25) N(r, 7; 7n+ 5) =
p(7n+ 5)

7
.

In an important paper, Atkin and Swinnerton-Dyer [9] confirmed Dyson’s conjecture
in 1954. It is not difficult to use Theorem 3.1 to give alternative proofs of these rank
identities, as well as others of similar type.

1He further postulated the existence of another statistic, the so-called “crank” that could be used to
provide an explanation for all three Ramanujan congruences. In 1988, Andrews and Garvan [8] found
the crank, and they confirmed Dyson’s speculation that it explains the three Ramanujan congruences.
Recent work of Mahlburg [24] establishes that the Andrews-Dyson-Garvan crank plays an even more
central role in the theory partition congruences. His work establishes congruences modulo arbitrary
powers of all primes ≥ 5. Other work by Garvan, Kim and Stanton [19] gives a different “crank” for
several other Ramanujan congruences.

2A short calculation reveals that this phenomenon cannot hold modulo 11.
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Although identities such as (3.24) and (3.25) are rare, it is still natural to use Theorem
3.5 to investigate the relation between ranks and generic partition congruences such as

p(48037937n+ 1122838) ≡ 0 (mod 17),

p(1977147619n+ 815655) ≡ 0 (mod 19),

p(14375n+ 3474) ≡ 0 (mod 23),

p(348104768909n+ 43819835) ≡ 0 (mod 29),

p(4063467631n+ 30064597) ≡ 0 (mod 31),

which are now known to exist (for example, see [10, 25, 2, 1]). We shall employ a
method first used by the author in [25] in his work on p(n), and we show that Dyson’s
rank partition functions themselves uniformly satisfy many congruences of Ramanujan
type.

Theorem 3.6. (Bringmann-Ono, Theorem 1.5 of [12])
Let t be a positive odd integer, and let Q - 6t be prime. If j is a positive integer, then

there are infinitely many non-nested arithmetic progressions An+B such that for every

0 ≤ r < t we have

N(r, t;An +B) ≡ 0 (mod Qj).

Two remarks.

1) Theorem 3.6 provides a combinatorial decomposition of the partition function con-
gruence

p(An+B) ≡ 0 (mod Qj).

2) By “non-nested”, we mean that there are infinitely many arithmetic progressions
An + B, with 0 ≤ B < A, with the property that there are no progressions which
contain another progression.

Unlike Dyson’s original conjectures for the congruences with modulus 5 and 7, and
the work of Mahlburg [24], Theorem 3.6 says nothing about those primes Q ≥ 5 which
may divide t. It is nearly certain that this is a consequence of a non-optimal proof.
There is good reason to suspect the truth of the following conjecture.

Conjecture. Theorem 3.6 holds for those primes Q ≥ 5 which divide t.

Sketch of the proof of Theorem 3.6. The proof depends on Theorem 3.5, the observa-
tion that certain “sieved” partition rank generating functions are weakly holomorphic
modular forms. In short, this result reduces the proof of Theorem 3.6 to the fact that
any finite number of half-integral weight cusp forms with integer coefficients are anni-
hilated, modulo a fixed prime power, by a positive proportion of half-integral weight
Hecke operators.

To be precise, suppose that f1(z), f2(z), . . . , fs(z) are half-integral weight cusp forms
where

fi(z) ∈ Sλi+
1
2
(Γ1(4Ni)) ∩ OK [[q]],
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and where OK is the ring of integers of a fixed number field K. If Q is prime and j ≥ 1
is an integer, then the set of primes L for which

(3.26) fi(z) | Tλi
(L2) ≡ 0 (mod Qj),

for each 1 ≤ i ≤ s, has positive Frobenius density. Here Tλi
(L2) denotes the usual L2

index Hecke operator of weight λi + 1
2
.

Suppose that P - 6tQ is prime. By Theorem 3.5, for every 0 ≤ r < t
(3.27)

F (r, t,P; z) =

∞∑

n=1

a(r, t,P;n)qn :=
∑

(24`tn−`t

P )=−(−24 è
t

P )

(
N(r, t;n) − p(n)

t

)
q`tn− `t

24

is a weakly holomorphic modular form of weight 1/2 on Γ1(144f 2
t
˜̀
tP4). Furthermore,

by the work of Ahlgren and the author [2], it follows that

(3.28) P (t,P; z) =

∞∑

n=1

p(t,P;n)qn :=
∑

(24`tn−`t

P )=−(−24 è
t

P )

p(n)q`tn− `t

24

is a weakly holomorphic modular form of weight −1/2 on Γ1(576˜̀tP4). In particular,

all of these forms are modular with respect to Γ1(576f 2
t
˜̀
tP4).

Since Q - 576f 2
t
˜̀
tP4, a result of Treneer (see Theorem 3.1 of [32]), generalizing earlier

observations of Ahlgren and Ono [2, 25], implies that there is a sufficiently large integer
m for which ∑

Q-n

a(r, t,P;Qmn)qn,

for all 0 ≤ r < t, and ∑

Q-n

p(t,P;Qmn)qn

are all congruent modulo Qj to forms in the graded ring of half-integral weight cusp

forms with algebraic integer coefficients on Γ1(576f 2
t
˜̀
tP4Q2).

The system of simultaneous congruences (3.26), in the case of these forms, guarantees
that a positive proportion of primes L have the property that these forms modulo Qj

are annihilated by the index L2 half-integral weight Hecke operators. Theorem 3.6 now
follows mutatis mutandis as in the proof of Theorem 1 of [25]. �

Two remarks.

1) The simultaneous system (3.26) of congruences follows from a straightforward gen-
eralization of a classical observation of Serre (see Section 6 of [30]).
2) Treneer states her result for weakly holomorphic modular forms on Γ0(4N) with
Nebentypus. We are using a straightforward extension of her result to Γ1(4N).
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3.3. The Andrews-Dragonette Conjecture for f(q). Rademacher famously em-
ployed the modularity of (1.1) to perfect the Hardy-Ramanujan asymptotic formula

(3.29) p(n) ∼ 1

4n
√

3
· eπ

√
2n/3

to obtain his exact formula for p(n). To state his formula, let Is(x) be the usual I-Bessel
function of order s. Furthermore, if k ≥ 1 and n are integers, then let

(3.30) Ak(n) :=
1

2

√
k

12

∑

x (mod 24k)
x2≡−24n+1 (mod 24k)

χ12(x) · e
( x

12k

)
,

where the sum runs over the residue classes modulo 24k, and where

χ12(x) :=

(
12

x

)
.(3.31)

If n is a positive integer, then one version of Rademacher’s formula reads [27]

(3.32) p(n) = 2π(24n− 1)−
3
4

∞∑

k=1

Ak(n)

k
· I 3

2

(
π
√

24n− 1

6k

)
.

If Ne(n) (resp. No(n)) denotes the number of partitions of n with even (resp. odd)
rank, then by letting w = −1 in (3.2) we obtain

(3.33) 1 +

∞∑

n=1

(Ne(n) −No(n))qn = 1 +

∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

In the spirit of Rademacher’s work, it is natural to seek exact formulas for Ne(n) and
No(n). In view of (3.32) and (3.33), since

p(n) = Ne(n) +No(n),

this question is equivalent to the problem of deriving exact formulas for the coefficients
α(n) of the mock theta function

(3.34) f(q) = 1 +

∞∑

n=1

α(n)qn := 1 +

∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

The problem of estimating the coefficients α(n) has a long history, one which even
precedes Dyson’s definition of partition ranks. Indeed, Ramanujan’s last letter to Hardy
already includes the claim that

α(n) = (−1)n−1
exp

(
π
√

n
6
− 1

144

)

2
√
n− 1

24

+O




exp
(

1
2
π
√

n
6
− 1

144

)

√
n− 1

24


 .
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Typical of his writings, Ramanujan offered no proof of this claim. Dragonette proved
this claim in her 1951 Ph.D. thesis [16], and Andrews [3] subsequently improved upon
Dragonette’s work, and he proved3 that
(3.35)

α(n) = π(24n− 1)−
1
4

[
√

n ]∑

k=1

(−1)b
k+1
2

cA2k

(
n− k(1+(−1)k)

4

)

k
· I 1

2

(
π
√

24n− 1

12k

)
+O(nε).

This result falls short of the problem of obtaining an exact formula for α(n). In his
plenary address “Partitions: At the interface of q-series and modular forms”, delivered
at the Millenial Number Theory Conference at the University of Illinois in 2000, An-
drews highlighted this classical problem by promoting his conjecture of 1966 (see page
456 of [3], and Section 5 of [5]) for the coefficients α(n).

Conjecture. (Andrews-Dragonette)
If n is a positive integer, then

(3.36) α(n) = π(24n− 1)−
1
4

∞∑

k=1

(−1)b
k+1
2

cA2k

(
n− k(1+(−1)k)

4

)

k
· I 1

2

(
π
√

24n− 1

12k

)
.

Bringmann and the author have proved [11] the following theorem.

Theorem 3.7. (Bringmann-Ono, Theorem 1.1 of [11])
The Andrews-Dragonette Conjecture is true.

Sketch of the proof. By a more precise version of Theorem 3.1, which is easily deduced
from work of Zwegers [35], we have that D

(
1
2
; z
)

is a weight 1/2 weak Maass form on

Γ0(144) with Nebentypus character χ12 =
(
12
·
)
. The idea behind the proof is simple.

We shall construct a Maass-Poincaré series which we shall show equals D
(

1
2
; z
)
. The

proof of the conjecture then follows from the fact that the formulas in the Andrews-
Dragonette Conjecture can be shown to give the coefficients of this Maass-Poincaré
series.

Suppose that k ∈ 1
2

+ Z. We define a class of Poincaré series Pk(s; z). For matrices
( a b

c d ) ∈ Γ0(2), with c ≥ 0, define the character χ(·) by

(3.37) χ

((
a b
c d

))
:=

{
e
(
− b

24

)
if c = 0,

i−1/2(−1)
1
2
(c+ad+1)e

(
−a+d

24c
− a

4
+ 3dc

8

)
· ω−1

−d,c if c > 0.

Throughout, let z = x+ iy, and for s ∈ C, k ∈ 1
2

+ Z, and y ∈ R \ {0}, let

(3.38) Ms(y) := |y|− k

2Mk

2
sgn(y), s− 1

2
(|y|),

3This is a reformulation of Theorem 5.1 of [3] using the identity I 1

2

(z) =
(

2

πz

) 1

2 · sinh(z).
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where Mν,µ(z) is the standard M-Whittaker function which is a solution to the differ-
ential equation

(3.39)
∂2u

∂z2
+

(
−1

4
+
ν

z
+

1
4
− µ2

z2

)
u = 0.

Furthermore, let

ϕs,k(z) := Ms

(
−πy

6

)
e
(
− x

24

)
.

Using this notation, define the Poincaré series Pk(s; z) by

(3.40) Pk(s; z) :=
2√
π

∑

M∈Γ∞\Γ0(2)

χ(M)−1(cz + d)−kϕs,k(Mz).

Here Γ∞ is the subgroup of translations in SL2(Z)

Γ∞ :=

{
±
(

1 n
0 1

)
: n ∈ Z

}
.

The defining series is absolutely convergent for Pk

(
1 − k

2
; z
)

for k < 1/2, and is

conditionally convergent when k = 1/2. We are interested in P 1
2

(
3
4
; z
)
, which we define

by analytically continuing Fourier expansions. This argument is not straightforward
(see Theorem 3.2 and Corollary 4.2 of [11]). Thanks to (3.39), as a result we find that
P 1

2

(
3
4
; 24z

)
is a weak Maass form of weight 1/2 for Γ0(144) with Nebentypus χ12.

After a long calculation, one can show that this Maass-Poincaré series has the Fourier
expansion

(3.41) P 1
2

(
3

4
; z

)
=

(
1 − π− 1

2 · Γ
(

1

2
,
πy

6

))
·q− 1

24 +
0∑

n=−∞
γy(n)qn− 1

24 +
∞∑

n=1

β(n)qn− 1
24 ,

where for positive integers n we have

(3.42) β(n) = π(24n− 1)−
1
4

∞∑

k=1

(−1)b
k+1
2

cA2k

(
n− k(1+(−1)k)

4

)

k
· I 1

2

(
π
√

24n− 1

12k

)
,

and for non-positive integers n we have

γy(n) = π
1
2 |24n− 1|− 1

4 · Γ
(

1

2
,
π|24n− 1| · y

6

)

×
∞∑

k=1

(−1)b
k+1
2

cA2k

(
n− k(1+(−1)k)

4

)

k
· J 1

2

(
π
√

|24n− 1|
12k

)
.

For convenience, we let

(3.43) P (z) := P 1
2

(
3

4
; 24z

)
.
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Canonically decompose P (z) into a non-holomorphic and a holomorphic part

(3.44) P (z) = Pnh(z) + Ph(z).

In particular, we have that

Ph(z) = q−1 +

∞∑

n=1

β(n)q24n−1.

Since P (z) and D
(

1
2
; z
)

are weak Maass forms of weight 1/2 for Γ0(144) with Neben-
typus χ12, (3.41) and (3.42) imply that the proof of the conjecture reduces to proving
these forms are equal. First, one shows that

(3.45) Pnh(z) = −S1

(
1

2
; z

)
.

To establish this, we apply Proposition 2.1. One can show that ξ 1
2
(P (z)) is a holomor-

phic modular form of weight 3/2 on Γ0(144) with Nebentypus χ12. Using (3.41), it can
be shown that the non-zero coefficients of ξ 1

2
(P (z)) are supported on exponents in the

arithmetic progression 1 (mod 24). Now we apply ξ 1
2

to D
(

1
2
; z
)
, and we find that

ξ 1
2

(
D

(
1

2
; z

))
= 4ϑ(ψ; z) = 4

∞∑

n=1

ψ(n)n qn2

,

where

ψ(n) :=

{
1 if n ≡ 1 (mod 6),

−1 if n ≡ 5 (mod 6).

Obviously, its Fourier coefficients are also supported on exponents in the arithmetic
progression 1 (mod 24). Therefore, ξ 1

2
(P (z)) and ξ 1

2

(
D
(

1
2
; z
))

are both holomorphic

modular forms of weight 3/2 on Γ0(144) with Nebentypus χ12. Using dimension formulas
for spaces of half-integral weight modular forms and the Serre-Stark Basis Theorem, it
follows that

(3.46) dimC(M1/2(Γ0(144), χ12)) = dimC(S1/2(Γ0(144), χ12)) = 0

implies that

dimC

(
M3/2 (Γ0(144), χ12)

)
= 24.

Since ξ 1
2
(P (z)), ξ 1

2

(
D
(

1
2
; z
))

∈ M3/2(Γ0(144), χ12) both have the property that their

Fourier coefficients are supported on exponents of the form 24n + 1 ≥ 1, choose a
constant c so that the coefficient of q, and hence all the coefficients up to and including
q24, of ξ 1

2
(P (z)) and c · ξ 1

2

(
D
(

1
2
; z
))

agree. By dimensionality, this in turn implies that

ξ 1
2
(P (z)) = c · ξ 1

2

(
D
(

1
2
; z
))

, and so we have that

Pnh(z) = −c · S1

(
1

2
; z

)
.
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To establish that c = 1, let

E(z) := P (z) − c ·D
(

1

2
; z

)
.

This function is a weakly holomorphic modular form of weight 1/2 on Γ0(144) with
Nebentypus χ12. By (3.35) and Corollary 4.2 of [11], it follows that

E(z) = Ph(z) − c ·D
(

1

2
; z

)
= (1 − c)q−1f(q24) +

∑

n≥0

A(n)q24n−1,

where |A(n)| = O
(
(24n− 1)

3
4
+ε
)

for positive integers n. By work of Zwegers [35],

applying the map z 7→ −1
z

returns a non-holomorphic contribution unless c = 1. Since
E(z) does not have a non-holomorphic component, it follows that c = 1, which in turn
proves that Pnh(z) = −S1

(
1
2
; z
)
.

Hence it follows that

P (z) −D

(
1

2
; z

)
= Ph(z) − q−1R(−1; q24)

= q−1 +
∞∑

n=1

β(n)q24n−1 − q−1f(q24) =
∞∑

n=1

ν(n)q24n−1

is a weakly holomorphic modular form of weight 1/2 on Γ0(144) with Nebentypus χ12.
By (3.35) and Corollary 4.2 of [11] again, it can be shown that

|ν(n)| = O
(
n

3
4
+ε
)
.

Therefore, P (z) − D
(

1
2
; z
)

is a holomorphic modular form. However, by (3.46), this

space is trivial, and so we find that P (z)−D
(

1
2
; z
)

= 0, which completes the proof. �
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